How to integrate Amazon Athena with Apache Airflow



Access and process Amazon Athena data in Apache Airflow using the CData JDBC Driver.

Apache Airflow supports the creation, scheduling, and monitoring of data engineering workflows. When paired with the CData JDBC Driver for Amazon Athena, Airflow can work with live Amazon Athena data. This article describes how to connect to and query Amazon Athena data from an Apache Airflow instance and store the results in a CSV file.

With built-in optimized data processing, the CData JDBC driver offers unmatched performance for interacting with live Amazon Athena data. When you issue complex SQL queries to Amazon Athena, the driver pushes supported SQL operations, like filters and aggregations, directly to Amazon Athena and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Amazon Athena data using native data types.

About Amazon Athena Data Integration

CData provides the easiest way to access and integrate live data from Amazon Athena. Customers use CData connectivity to:

  • Authenticate securely using a variety of methods, including IAM credentials, access keys, and Instance Profiles, catering to diverse security needs and simplifying the authentication process.
  • Streamline their setup and quickly resolve issue with detailed error messaging.
  • Enhance performance and minimize strain on client resources with server-side query execution.

Users frequently integrate Athena with analytics tools like Tableau, Power BI, and Excel for in-depth analytics from their preferred tools.

To learn more about unique Amazon Athena use cases with CData, check out our blog post: https://www.cdata.com/blog/amazon-athena-use-cases.


Getting Started


Configuring the Connection to Amazon Athena

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Amazon Athena JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.amazonathena.jar

Fill in the connection properties and copy the connection string to the clipboard.

Authenticating to Amazon Athena

To authorize Amazon Athena requests, provide the credentials for an administrator account or for an IAM user with custom permissions: Set AccessKey to the access key Id. Set SecretKey to the secret access key.

Note: Though you can connect as the AWS account administrator, it is recommended to use IAM user credentials to access AWS services.

Obtaining the Access Key

To obtain the credentials for an IAM user, follow the steps below:

  1. Sign into the IAM console.
  2. In the navigation pane, select Users.
  3. To create or manage the access keys for a user, select the user and then select the Security Credentials tab.

To obtain the credentials for your AWS root account, follow the steps below:

  1. Sign into the AWS Management console with the credentials for your root account.
  2. Select your account name or number and select My Security Credentials in the menu that is displayed.
  3. Click Continue to Security Credentials and expand the Access Keys section to manage or create root account access keys.

Authenticating from an EC2 Instance

If you are using the CData Data Provider for Amazon Athena 2018 from an EC2 Instance and have an IAM Role assigned to the instance, you can use the IAM Role to authenticate. To do so, set UseEC2Roles to true and leave AccessKey and SecretKey empty. The CData Data Provider for Amazon Athena 2018 will automatically obtain your IAM Role credentials and authenticate with them.

Authenticating as an AWS Role

In many situations it may be preferable to use an IAM role for authentication instead of the direct security credentials of an AWS root user. An AWS role may be used instead by specifying the RoleARN. This will cause the CData Data Provider for Amazon Athena 2018 to attempt to retrieve credentials for the specified role. If you are connecting to AWS (instead of already being connected such as on an EC2 instance), you must additionally specify the AccessKey and SecretKey of an IAM user to assume the role for. Roles may not be used when specifying the AccessKey and SecretKey of an AWS root user.

Authenticating with MFA

For users and roles that require Multi-factor Authentication, specify the MFASerialNumber and MFAToken connection properties. This will cause the CData Data Provider for Amazon Athena 2018 to submit the MFA credentials in a request to retrieve temporary authentication credentials. Note that the duration of the temporary credentials may be controlled via the TemporaryTokenDuration (default 3600 seconds).

Connecting to Amazon Athena

In addition to the AccessKey and SecretKey properties, specify Database, S3StagingDirectory and Region. Set Region to the region where your Amazon Athena data is hosted. Set S3StagingDirectory to a folder in S3 where you would like to store the results of queries.

If Database is not set in the connection, the data provider connects to the default database set in Amazon Athena.

To host the JDBC driver in clustered environments or in the cloud, you will need a license (full or trial) and a Runtime Key (RTK). For more information on obtaining this license (or a trial), contact our sales team.

The following are essential properties needed for our JDBC connection.

PropertyValue
Database Connection URLjdbc:amazonathena:RTK=5246...;AWSAccessKey='a123';AWSSecretKey='s123';AWSRegion='IRELAND';Database='sampledb';S3StagingDirectory='s3://bucket/staging/';
Database Driver Class Namecdata.jdbc.amazonathena.AmazonAthenaDriver

Establishing a JDBC Connection within Airflow

  1. Log into your Apache Airflow instance.
  2. On the navbar of your Airflow instance, hover over Admin and then click Connections.
  3. Next, click the + sign on the following screen to create a new connection.
  4. In the Add Connection form, fill out the required connection properties:
    • Connection Id: Name the connection, i.e.: amazonathena_jdbc
    • Connection Type: JDBC Connection
    • Connection URL: The JDBC connection URL from above, i.e.: jdbc:amazonathena:RTK=5246...;AWSAccessKey='a123';AWSSecretKey='s123';AWSRegion='IRELAND';Database='sampledb';S3StagingDirectory='s3://bucket/staging/';)
    • Driver Class: cdata.jdbc.amazonathena.AmazonAthenaDriver
    • Driver Path: PATH/TO/cdata.jdbc.amazonathena.jar
  5. Test your new connection by clicking the Test button at the bottom of the form.
  6. After saving the new connection, on a new screen, you should see a green banner saying that a new row was added to the list of connections:

Creating a DAG

A DAG in Airflow is an entity that stores the processes for a workflow and can be triggered to run this workflow. Our workflow is to simply run a SQL query against Amazon Athena data and store the results in a CSV file.

  1. To get started, in the Home directory, there should be an "airflow" folder. Within there, we can create a new directory and title it "dags". In here, we store Python files that convert into Airflow DAGs shown on the UI.
  2. Next, create a new Python file and title it amazon athena_hook.py. Insert the following code inside of this new file:
    	import time
    	from datetime import datetime
    	from airflow.decorators import dag, task
    	from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    	import pandas as pd
    
    	# Declare Dag
    	@dag(dag_id="amazon athena_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    	
    	# Define Dag Function
    	def extract_and_load():
    	# Define tasks
    		@task()
    		def jdbc_extract():
    			try:
    				hook = JdbcHook(jdbc_conn_id="jdbc")
    				sql = """ select * from Account """
    				df = hook.get_pandas_df(sql)
    				df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    				# print(df.head())
    				print(df)
    				tbl_dict = df.to_dict('dict')
    				return tbl_dict
    			except Exception as e:
    				print("Data extract error: " + str(e))
                
    		jdbc_extract()
        
    	sf_extract_and_load = extract_and_load()
    
  3. Save this file and refresh your Airflow instance. Within the list of DAGs, you should see a new DAG titled "amazon athena_hook".
  4. Click on this DAG and, on the new screen, click on the unpause switch to make it turn blue, and then click the trigger (i.e. play) button to run the DAG. This executes the SQL query in our amazon athena_hook.py file and export the results as a CSV to whichever file path we designated in our code.
  5. After triggering our new DAG, we check the Downloads folder (or wherever you chose within your Python script), and see that the CSV file has been created - in this case, account.csv.
  6. Open the CSV file to see that your Amazon Athena data is now available for use in CSV format thanks to Apache Airflow.

More Information & Free Trial

Download a free, 30-day trial of the CData JDBC Driver for Amazon Athena and start working with your live Amazon Athena data in Apache Airflow. Reach out to our Support Team if you have any questions.

Ready to get started?

Download a free trial of the Amazon Athena Driver to get started:

 Download Now

Learn more:

Amazon Athena Icon Amazon Athena JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with Amazon Athena.