製品をチェック

Wave Financial Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

Wave Financial アイコン Wave Financial Python Connector 相談したい

Wave Financial データ連携用Python コネクタライブラリ。Wave Financial データをPandas、SQLAlchemy、Dash、petl などの人気のPython ツールにシームレスに統合。

Python pandas を使ってWave Financial データを可視化・分析する方法

CData Python Connector を使えば、Python でWave Financial をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
wavefinancial ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for WaveFinancial は、pandas、Matplotlib、SQLAlchemy から使用することで Wave Financial にデータ連携するPython アプリケーションを構築したり、Wave Financial データの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でWave Financial にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Wave Financial をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにWave Financial データを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてWave Financial の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でWave Financial にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でWave Financial データを可視化

次は接続文字列を作成してWave Financial に接続します。create_engine 関数を使って、Wave Financial に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("wavefinancial:///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

Wave Financial 接続プロパティの取得・設定方法

Wave Financial は、データに接続する手段として、API トークンを指定する方法とOAuth 認証情報を使用する方法の2つを提供しています。

API トークン

Wave Financial API トークンを取得するには:

  1. Wave Financial アカウントにログインします。
  2. 左ペインのManage Applications に移動します。
  3. トークンを作成するアプリケーションを選択します。最初にアプリケーションを作成する必要がある場合があります。
  4. API トークンを生成するには、Create token をクリックします。

OAuth

Wave Financial はOAuth 認証のみサポートします。すべてのOAuth フローで、この認証を有効にするにはAuthSchemeOAuth に設定する必要があります。

ヘルプドキュメントでは、以下の3つの一般的な認証フローでのWave Financial への認証について詳しく説明しています。

  • デスクトップ:ユーザーのローカルマシン上でのサーバーへの接続で、テストやプロトタイピングによく使用されます。組み込みOAuth またはカスタムOAuth で認証されます。
  • Web:共有ウェブサイト経由でデータにアクセスします。カスタムOAuth でのみ認証されます。
  • ヘッドレスサーバー:他のコンピュータやそのユーザーにサービスを提供する専用コンピュータで、モニタやキーボードなしで動作するように構成されています。組み込みOAuth またはカスタムOAuth で認証されます。

カスタムOAuth アプリケーションの作成についての情報と、組み込みOAuth 認証情報を持つ認証フローでもカスタムOAuth アプリケーションを作成したほうがよい場合の説明については、ヘルプドキュメント の「カスタムOAuth アプリケーションの作成」セクションを参照してください。

Wave Financial にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Id, DueDate FROM Invoices WHERE Status = 'SENT'""", engine)

Wave Financial データを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Wave Financial データをグラフ化してみます。

df.plot(kind="bar", x="Id", y="DueDate")
plt.show()
Wave Financial データ in a Python plot (Salesforce is shown).

Wave Financial からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("wavefinancial:///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT Id, DueDate FROM Invoices WHERE Status = 'SENT'""", engine)

df.plot(kind="bar", x="Id", y="DueDate")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。