製品をチェック

Power BI XMLA Driver の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

Power BI XMLA アイコン Power BI XMLA JDBC Driver 相談したい

Power BI XMLA データに連携するJava アプリケーションを素早く、簡単に開発できる便利なドライバー。

Apache Airflow でPower BI XMLA のデータに連携したワークフローを作る

CData JDBC Driver を使ってApache Airflow からPower BI XMLA のデータにアクセスして操作します。

古川えりか
コンテンツスペシャリスト

最終更新日:2022-09-07
powerbixmla ロゴ

CData

jdbc ロゴ画像
Apache Airflow ロゴ

こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。

Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for PowerBIXMLA と組み合わせることで、Airflow からリアルタイムPower BI XMLA のデータに連携できます。 この記事では、Apache Airflow インスタンスからPower BI XMLA のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。

最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムPower BI XMLA のデータを扱う上で高いパフォーマンスを提供します。 Power BI XMLA にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのPower BI XMLA 側でサポートしているSQL 操作をPower BI XMLA に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってPower BI XMLA のデータを操作および分析できます。

Power BI XMLA への接続を構成する

組み込みの接続文字列デザイナー

JDBC URL の作成の補助として、Power BI XMLA JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。

java -jar cdata.jdbc.powerbixmla.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

PowerBIXMLA 接続プロパティの取得・設定方法

接続するには、Workspace プロパティを有効なPowerBIXMLA ワークスペースに設定します(例:CData)。 同時に複数のワークスペースに接続するには、ワークスペースのカンマ区切りのリストを指定するだけです。

組み込みの接続文字列デザイナーを使ってJDBC URL を生成(power bi xmla の場合)

クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。

以下は、JDBC 接続で要求される必須プロパティです。

プロパティ
Database Connection URL jdbc:powerbixmla:RTK=5246...;URL=powerbi://api.powerbi.com/v1.0/myorg/CData;InitiateOAuth=GETANDREFRESH
Database Driver Class Namecdata.jdbc.powerbixmla.PowerBIXMLADriver

Airflow でJDBC 接続を確立する

  1. Apache Airflow インスタンスにログインします。
  2. Airflow インスタンスのナビゲーションバーで、「Admin」にカーソルを合わせ、「Connections」をクリックします。 connections をクリック
  3. 次の画面で「+」マークをクリックして新しい接続を作成します。
  4. Add Connection フォームで、必要な接続プロパティを入力します。
    • Connection Id:接続の名前:powerbixmla_jdbc
    • Connection Type:JDBC Connection
    • Connection URL:上記のJDBC 接続URL:jdbc:powerbixmla:RTK=5246...;URL=powerbi://api.powerbi.com/v1.0/myorg/CData;InitiateOAuth=GETANDREFRESH
    • Driver Class:cdata.jdbc.powerbixmla.PowerBIXMLADriver
    • Driver Path:PATH/TO/cdata.jdbc.powerbixmla.jar
    JDBC 接続フォームを追加
  5. フォームの下にある「Test」ボタンをクリックし、新規の接続をテストします。
  6. 新規接続を保存すると、新しく表示される画面に、接続リストに新しい行が追加されたことを示す緑のバナーが表示されます。 新規接続が追加

DAG を作成する

Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにPower BI XMLA のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。

  1. はじめに、Home ディレクトリにある「airflow」フォルダに移動します。その中に新しいディレクトリを作成し、タイトルを「dags」とします。 ここに、UI に表示されるAirflow のDAG を構築するPython ファイルを格納します。
  2. 次に新しいPython ファイルを作成し、タイトルをpower bi xmla_hook.py にします。この新規ファイル内に、次のコードを挿入します。
    		import time
    		from datetime import datetime
    		from airflow.decorators import dag, task
    		from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    		import pandas as pd
    
    		# Dag の宣言
    		@dag(dag_id="power bi xmla_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    
    		# Dag となる関数を定義(取得するテーブルは必要に応じて変更してください)
    		def extract_and_load():
    		# Define tasks
    			@task()
    			def jdbc_extract():
    				try:
    					hook = JdbcHook(jdbc_conn_id="jdbc")
    					sql = """ select * from Account """
    					df = hook.get_pandas_df(sql)
    					df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    					# print(df.head())
    					print(df)
    					tbl_dict = df.to_dict('dict')
    					return tbl_dict
    				except Exception as e:
    					print("Data extract error: " + str(e))
    
    			jdbc_extract()
    
    		sf_extract_and_load = extract_and_load()
    	
  3. このファイルを保存し、Airflow インスタンスをリフレッシュします。DAG リストの中に、「power bi xmla_hook」というタイトルの新しいDAG が表示されるはずです。 新しいDAG が追加
  4. このDAG をクリックし、新しく表示される画面で一時停止解除スイッチをクリックして青色にし、トリガー(=play)ボタンをクリックしてDAG を実行します。この操作で、power bi xmla_hook.py ファイルのSQL クエリを実行し、結果をCSV としてコード内で指定したファイルパスにエクスポートします。 DAG を実行
  5. 新規のDAG を実行後、Downloads フォルダ(またはPython スクリプト内で選択したフォルダ)を確認し、CSV ファイルが作成されていることを確認します(本ワークフローの場合はaccount.csv です)。 CSV が作成される
  6. CSV ファイルを開くと、Apache Airflow によってPower BI XMLA のデータがCSV 形式で利用できるようになったことが確認できます。 Power BI XMLA のデータのCSV ファイル

詳細と無償トライアル

CData JDBC Driver for PowerBIXMLA の 30日間無償トライアル をダウンロードして、Apache Airflow でリアルタイムPower BI XMLA のデータの操作をはじめましょう!ご不明な点があれば、サポートチームにお問い合わせください。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。