製品をチェック

JSON Driver の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

JSON アイコン JSON JDBC Driver 相談したい

JSON Web サービス連携のパワフルなJava アプリケーションを素早く作成して配布。

Apache Airflow でJSON のデータに連携したワークフローを作る

CData JDBC Driver を使ってApache Airflow からJSON のデータにアクセスして操作します。

古川えりか
コンテンツスペシャリスト

最終更新日:2022-09-07
json ロゴ

CData

jdbc ロゴ画像
Apache Airflow ロゴ

こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。

Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for JSON と組み合わせることで、Airflow からリアルタイムJSON のデータに連携できます。 この記事では、Apache Airflow インスタンスからJSON のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。

最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムJSON のデータを扱う上で高いパフォーマンスを提供します。 JSON にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのJSON 側でサポートしているSQL 操作をJSON に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってJSON のデータを操作および分析できます。

JSON への接続を構成する

組み込みの接続文字列デザイナー

JDBC URL の作成の補助として、JSON JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。

java -jar cdata.jdbc.json.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

データソースへの認証については、ヘルプドキュメントの「はじめに」を参照してください。CData 製品は、JSON API を双方向データベーステーブルとして、JSON ファイルを読み取り専用ビュー(ローカル ファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)としてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。詳細はヘルプドキュメントの「はじめに」を参照してください。

URI を設定して認証値を入力したら、DataModel を設定してデータ表現とデータ構造をより厳密に一致させます。

DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、次の基本設定を切り替えます。

  • Document(デフォルト):JSON データのトップレベルのドキュメントビューをモデル化します。CData 製品 は、ネストされたオブジェクト配列を集約されたJSON オブジェクトとして返します。
  • FlattenedDocuments:ネストされた配列オブジェクトと親オブジェクトを、単一テーブルに暗黙的に結合します。
  • Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれています。

リレーショナル表現の設定についての詳細は、ヘルプドキュメントの「JSON データのモデリング」を参照してください。また、以下の例で使用されているサンプルデータも確認できます。データには人や所有する車、それらの車に行われたさまざまなメンテナンスサービスのエントリが含まれています。

Amazon S3 内のJSON への接続

URI をバケット内のJSON ドキュメントに設定します。さらに、次のプロパティを設定して認証します。

  • AWSAccessKey:AWS アクセスキー(username)に設定。
  • AWSSecretKey:AWS シークレットキーに設定。

Box 内のJSON への接続

URI をJSON ファイルへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。

Dropbox 内のJSON への接続

URI をJSON ファイルへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。 URI=dropbox://folder1/file.json; InitiateOAuth=GETANDREFRESH; OAuthClientId=oauthclientid1; OAuthClientSecret=oauthcliensecret1; CallbackUrl=http://localhost:12345;

SharePoint Online SOAP 内のJSON への接続

URI をJSON ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。

SharePoint Online REST 内のJSON への接続

URI をJSON ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。

FTP 内のJSON への接続

URI をJSON ファイルへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。

Google Drive 内のJSON への接続

デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。

組み込みの接続文字列デザイナーを使ってJDBC URL を生成(json の場合)

クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。

以下は、JDBC 接続で要求される必須プロパティです。

プロパティ
Database Connection URL jdbc:json:RTK=5246...;URI=C:/people.json;DataModel=Relational;
Database Driver Class Namecdata.jdbc.json.JSONDriver

Airflow でJDBC 接続を確立する

  1. Apache Airflow インスタンスにログインします。
  2. Airflow インスタンスのナビゲーションバーで、「Admin」にカーソルを合わせ、「Connections」をクリックします。 connections をクリック
  3. 次の画面で「+」マークをクリックして新しい接続を作成します。
  4. Add Connection フォームで、必要な接続プロパティを入力します。
    • Connection Id:接続の名前:json_jdbc
    • Connection Type:JDBC Connection
    • Connection URL:上記のJDBC 接続URL:jdbc:json:RTK=5246...;URI=C:/people.json;DataModel=Relational;
    • Driver Class:cdata.jdbc.json.JSONDriver
    • Driver Path:PATH/TO/cdata.jdbc.json.jar
    JDBC 接続フォームを追加
  5. フォームの下にある「Test」ボタンをクリックし、新規の接続をテストします。
  6. 新規接続を保存すると、新しく表示される画面に、接続リストに新しい行が追加されたことを示す緑のバナーが表示されます。 新規接続が追加

DAG を作成する

Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにJSON のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。

  1. はじめに、Home ディレクトリにある「airflow」フォルダに移動します。その中に新しいディレクトリを作成し、タイトルを「dags」とします。 ここに、UI に表示されるAirflow のDAG を構築するPython ファイルを格納します。
  2. 次に新しいPython ファイルを作成し、タイトルをjson_hook.py にします。この新規ファイル内に、次のコードを挿入します。
    		import time
    		from datetime import datetime
    		from airflow.decorators import dag, task
    		from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    		import pandas as pd
    
    		# Dag の宣言
    		@dag(dag_id="json_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    
    		# Dag となる関数を定義(取得するテーブルは必要に応じて変更してください)
    		def extract_and_load():
    		# Define tasks
    			@task()
    			def jdbc_extract():
    				try:
    					hook = JdbcHook(jdbc_conn_id="jdbc")
    					sql = """ select * from Account """
    					df = hook.get_pandas_df(sql)
    					df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    					# print(df.head())
    					print(df)
    					tbl_dict = df.to_dict('dict')
    					return tbl_dict
    				except Exception as e:
    					print("Data extract error: " + str(e))
    
    			jdbc_extract()
    
    		sf_extract_and_load = extract_and_load()
    	
  3. このファイルを保存し、Airflow インスタンスをリフレッシュします。DAG リストの中に、「json_hook」というタイトルの新しいDAG が表示されるはずです。 新しいDAG が追加
  4. このDAG をクリックし、新しく表示される画面で一時停止解除スイッチをクリックして青色にし、トリガー(=play)ボタンをクリックしてDAG を実行します。この操作で、json_hook.py ファイルのSQL クエリを実行し、結果をCSV としてコード内で指定したファイルパスにエクスポートします。 DAG を実行
  5. 新規のDAG を実行後、Downloads フォルダ(またはPython スクリプト内で選択したフォルダ)を確認し、CSV ファイルが作成されていることを確認します(本ワークフローの場合はaccount.csv です)。 CSV が作成される
  6. CSV ファイルを開くと、Apache Airflow によってJSON のデータがCSV 形式で利用できるようになったことが確認できます。 JSON のデータのCSV ファイル

詳細と無償トライアル

CData JDBC Driver for JSON の 30日間無償トライアル をダウンロードして、Apache Airflow でリアルタイムJSON のデータの操作をはじめましょう!ご不明な点があれば、サポートチームにお問い合わせください。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。