製品をチェック

Google Contacts Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

Google Contacts アイコン Google Contacts Python Connector 相談したい

Google コンタクトへのデータ連携用のPython Connector ライブラリ。pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにGoogle コンタクトをシームレスに統合。

Python pandas を使ってGoogle Contacts のデータを可視化・分析する方法

CData Python Connector を使えば、Python でGoogle Contacts をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
googlecontacts ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for GoogleContacts は、pandas、Matplotlib、SQLAlchemy から使用することで Google Contacts にデータ連携するPython アプリケーションを構築したり、Google Contacts のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でGoogle Contacts にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Google Contacts をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにGoogle Contacts のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてGoogle Contacts の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でGoogle Contacts にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でGoogle Contacts のデータを可視化

次は接続文字列を作成してGoogle Contacts に接続します。create_engine 関数を使って、Google Contacts に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("googlecontacts:///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

Google Contacts はOAuth 認証標準を利用しています。各ユーザー やドメイン内のユーザーの代わりに、CData 製品がGoogle API にアクセスすることを許可できます。 接続すると、CData 製品はデフォルトブラウザでOAuth エンドポイントを開きます。ログインして、アプリケーションにアクセス許可を与えます。CData 製品がOAuth プロセスを完了します。

詳細はヘルプドキュメントを参照してください。

Google Contacts にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Summary, StartDateTime FROM Friends WHERE SearchTerms = 'Durham'""", engine)

Google Contacts のデータを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Google Contacts のデータをグラフ化してみます。

df.plot(kind="bar", x="Summary", y="StartDateTime")
plt.show()
Google Contacts データ in a Python plot (Salesforce is shown).

Google Contacts からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("googlecontacts:///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT Summary, StartDateTime FROM Friends WHERE SearchTerms = 'Durham'""", engine)

df.plot(kind="bar", x="Summary", y="StartDateTime")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。