How to Query Live Odoo Data in Natural Language in Python using LlamaIndex



Use LlamaIndex to query live Odoo data data in natural language using Python.

Start querying live data from Odoo using the CData Python Connector for Odoo. Leverage the power of AI with LlamaIndex and retrieve insights using simple English, eliminating the need for complex SQL queries. Benefit from real-time data access that enhances your decision-making process, while easily integrating with your existing Python applications.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Odoo data in Python. When you issue complex SQL queries from Python, the driver pushes supported SQL operations, like filters and aggregations, directly to Odoo and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Whether you're analyzing trends, generating reports, or visualizing data, our Python connectors enable you to harness the full potential of your live data source with ease.

About Odoo Data Integration

Accessing and integrating live data from Odoo has never been easier with CData. Customers rely on CData connectivity to:

  • Access live data from both Odoo API 8.0+ and Odoo.sh Cloud ERP.
  • Extend the native Odoo features with intelligent handling of many-to-one, one-to-many, and many-to-many data properties. CData's connectivity solutions also intelligently handle complex data properties within Odoo. In addition to columns with simple values like text and dates, there are also columns that contain multiple values on each row. The driver decodes these kinds of values differently, depending upon the type of column the value comes from:
    • Many-to-one columns are references to a single row within another model. Within CData solutions, many-to-one columns are represented as integers, whose value is the ID to which they refer in the other model.
    • Many-to-many columns are references to many rows within another model. Within CData solutions, many-to-many columns are represented as text containing a comma-separated list of integers. Each value in that list is the ID of a row that is being referenced.
    • One-to-many columns are references to many rows within another model - they are similar to many-to-many columns (comma-separated lists of integers), except that each row in the referenced model must belong to only one in the main model.
  • Use SQL stored procedures to call server-side RFCs within Odoo.

Users frequently integrate Odoo with analytics tools such as Power BI and Qlik Sense, and leverage our tools to replicate Odoo data to databases or data warehouses.


Getting Started


Overview

Here's how to query live data with CData's Python connector for Odoo data using LlamaIndex:

  • Import required Python, CData, and LlamaIndex modules for logging, database connectivity, and NLP.
  • Retrieve your OpenAI API key for authenticating API requests from your application.
  • Connect to live Odoo data using the CData Python Connector.
  • Initialize OpenAI and create instances of SQLDatabase and NLSQLTableQueryEngine for handling natural language queries.
  • Create the query engine and specific database instance.
  • Execute natural language queries (e.g., "Who are the top-earning employees?") to get structured responses from the database.
  • Analyze retrieved data to gain insights and inform data-driven decisions.

Import Required Modules

Import the necessary modules CData, database connections, and natural language querying.

import os import logging import sys # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # Import required modules for CData and LlamaIndex import cdata.odoo as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI

Set Your OpenAI API Key

To use OpenAI's language model, you need to set your API key as an environment variable. Make sure you have your OpenAI API key available in your system's environment variables.

# Retrieve the OpenAI API key from the environment variables OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''as an alternative, you can also add your API key directly within your code (though this method is not recommended for production environments due to security risks):'' # Directly set the API key (not recommended for production use) OPENAI_API_KEY = "your-api-key-here"

Create a Database Connection

Next, establish a connection to Odoo using the CData connector using a connection string with the required connection properties.

To connect, set the Url to a valid Odoo site, User and Password to the connection details of the user you are connecting with, and Database to the Odoo database.

Connecting to Odoo

# Create a database engine using the CData Python Connector for Odoo engine = create_engine("cdata_odoo_2:///?User=User=MyUser;Password=MyPassword;URL=http://MyOdooSite/;Database=MyDatabase;")

Initialize the OpenAI Instance

Create an instance of the OpenAI language model. Here, you can specify parameters like temperature and the model version.

# Initialize the OpenAI language model instance llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

Set Up the Database and Query Engine

Now, set up the SQL database and the query engine. The NLSQLTableQueryEngine allows you to perform natural language queries against your SQL database.

# Create a SQL database instance sql_db = SQLDatabase(engine) # This includes all tables # Initialize the query engine for natural language SQL queries query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

Execute a Query

Now, you can execute a natural language query against your live data source. In this example, we will query for the top two earning employees.

# Define your query string query_str = "Who are the top earning employees?" # Get the response from the query engine response = query_engine.query(query_str) # Print the response print(response)

Download a free, 30-day trial of the CData Python Connector for Odoo and start querying your live data seamlessly. Experience the power of natural language processing and unlock valuable insights from your data today.

Ready to get started?

Download a free trial of the Odoo Connector to get started:

 Download Now

Learn more:

Odoo Icon Odoo Python Connector

Python Connector Libraries for Odoo Data Connectivity. Integrate Odoo with popular Python tools like Pandas, SQLAlchemy, Dash & petl.