How to Query Live HubDB Data in Natural Language in Python using LlamaIndex



Use LlamaIndex to query live HubDB data data in natural language using Python.

Start querying live data from HubDB using the CData Python Connector for HubDB. Leverage the power of AI with LlamaIndex and retrieve insights using simple English, eliminating the need for complex SQL queries. Benefit from real-time data access that enhances your decision-making process, while easily integrating with your existing Python applications.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live HubDB data in Python. When you issue complex SQL queries from Python, the driver pushes supported SQL operations, like filters and aggregations, directly to HubDB and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Whether you're analyzing trends, generating reports, or visualizing data, our Python connectors enable you to harness the full potential of your live data source with ease.

Overview

Here's how to query live data with CData's Python connector for HubDB data using LlamaIndex:

  • Import required Python, CData, and LlamaIndex modules for logging, database connectivity, and NLP.
  • Retrieve your OpenAI API key for authenticating API requests from your application.
  • Connect to live HubDB data using the CData Python Connector.
  • Initialize OpenAI and create instances of SQLDatabase and NLSQLTableQueryEngine for handling natural language queries.
  • Create the query engine and specific database instance.
  • Execute natural language queries (e.g., "Who are the top-earning employees?") to get structured responses from the database.
  • Analyze retrieved data to gain insights and inform data-driven decisions.

Import Required Modules

Import the necessary modules CData, database connections, and natural language querying.

import os import logging import sys # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # Import required modules for CData and LlamaIndex import cdata.hubdb as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI

Set Your OpenAI API Key

To use OpenAI's language model, you need to set your API key as an environment variable. Make sure you have your OpenAI API key available in your system's environment variables.

# Retrieve the OpenAI API key from the environment variables OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''as an alternative, you can also add your API key directly within your code (though this method is not recommended for production environments due to security risks):'' # Directly set the API key (not recommended for production use) OPENAI_API_KEY = "your-api-key-here"

Create a Database Connection

Next, establish a connection to HubDB using the CData connector using a connection string with the required connection properties.

There are two authentication methods available for connecting to HubDB data source: OAuth Authentication with a public HubSpot application and authentication with a Private application token.

Using a Custom OAuth App

AuthScheme must be set to "OAuth" in all OAuth flows. Be sure to review the Help documentation for the required connection properties for you specific authentication needs (desktop applications, web applications, and headless machines).

Follow the steps below to register an application and obtain the OAuth client credentials:

  1. Log into your HubSpot app developer account.
    • Note that it must be an app developer account. Standard HubSpot accounts cannot create public apps.
  2. On the developer account home page, click the Apps tab.
  3. Click Create app.
  4. On the App info tab, enter and optionally modify values that are displayed to users when they connect. These values include the public application name, application logo, and a description of the application.
  5. On the Auth tab, supply a callback URL in the "Redirect URLs" box.
    • If you're creating a desktop application, set this to a locally accessible URL like http://localhost:33333.
    • If you are creating a Web application, set this to a trusted URL where you want users to be redirected to when they authorize your application.
  6. Click Create App. HubSpot then generates the application, along with its associated credentials.
  7. On the Auth tab, note the Client ID and Client secret. You will use these later to configure the driver.
  8. Under Scopes, select any scopes you need for your application's intended functionality.

    A minimum of the following scopes is required to access tables:

    • hubdb
    • oauth
    • crm.objects.owners.read
  9. Click Save changes.
  10. Install the application into a production portal with access to the features that are required by the integration.
    • Under "Install URL (OAuth)", click Copy full URL to copy the installation URL for your application.
    • Navigate to the copied link in your browser. Select a standard account in which to install the application.
    • Click Connect app. You can close the resulting tab.

Using a Private App

To connect using a HubSpot private application token, set the AuthScheme property to "PrivateApp."

You can generate a private application token by following the steps below:

  1. In your HubDB account, click the settings icon (the gear) in the main navigation bar.
  2. In the left sidebar menu, navigate to Integrations > Private Apps.
  3. Click Create private app.
  4. On the Basic Info tab, configure the details of your application (name, logo, and description).
  5. On the Scopes tab, select Read or Write for each scope you want your private application to be able to access.
  6. A minimum of hubdb and crm.objects.owners.read is required to access tables.
  7. After you are done configuring your application, click Create app in the top right.
  8. Review the info about your application's access token, click Continue creating, and then Show token.
  9. Click Copy to copy the private application token.

To connect, set PrivateAppToken to the private application token you retrieved.

Connecting to HubDB

# Create a database engine using the CData Python Connector for HubDB engine = create_engine("cdata_hubdb_2:///?User=AuthScheme=OAuth;OAuthClientID=MyOAuthClientID;OAuthClientSecret=MyOAuthClientSecret;CallbackURL=http://localhost:33333;")

Initialize the OpenAI Instance

Create an instance of the OpenAI language model. Here, you can specify parameters like temperature and the model version.

# Initialize the OpenAI language model instance llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

Set Up the Database and Query Engine

Now, set up the SQL database and the query engine. The NLSQLTableQueryEngine allows you to perform natural language queries against your SQL database.

# Create a SQL database instance sql_db = SQLDatabase(engine) # This includes all tables # Initialize the query engine for natural language SQL queries query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

Execute a Query

Now, you can execute a natural language query against your live data source. In this example, we will query for the top two earning employees.

# Define your query string query_str = "Who are the top earning employees?" # Get the response from the query engine response = query_engine.query(query_str) # Print the response print(response)

Download a free, 30-day trial of the CData Python Connector for HubDB and start querying your live data seamlessly. Experience the power of natural language processing and unlock valuable insights from your data today.

Ready to get started?

Download a free trial of the HubDB Connector to get started:

 Download Now

Learn more:

HubDB Icon HubDB Python Connector

Python Connector Libraries for HubDB Data Connectivity. Integrate HubDB with popular Python tools like Pandas, SQLAlchemy, Dash & petl.