How to Query Live Adobe Analytics Data in Natural Language in Python using LlamaIndex



Use LlamaIndex to query live Adobe Analytics data data in natural language using Python.

Start querying live data from Adobe Analytics using the CData Python Connector for Adobe Analytics. Leverage the power of AI with LlamaIndex and retrieve insights using simple English, eliminating the need for complex SQL queries. Benefit from real-time data access that enhances your decision-making process, while easily integrating with your existing Python applications.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Adobe Analytics data in Python. When you issue complex SQL queries from Python, the driver pushes supported SQL operations, like filters and aggregations, directly to Adobe Analytics and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Whether you're analyzing trends, generating reports, or visualizing data, our Python connectors enable you to harness the full potential of your live data source with ease.

Overview

Here's how to query live data with CData's Python connector for Adobe Analytics data using LlamaIndex:

  • Import required Python, CData, and LlamaIndex modules for logging, database connectivity, and NLP.
  • Retrieve your OpenAI API key for authenticating API requests from your application.
  • Connect to live Adobe Analytics data using the CData Python Connector.
  • Initialize OpenAI and create instances of SQLDatabase and NLSQLTableQueryEngine for handling natural language queries.
  • Create the query engine and specific database instance.
  • Execute natural language queries (e.g., "Who are the top-earning employees?") to get structured responses from the database.
  • Analyze retrieved data to gain insights and inform data-driven decisions.

Import Required Modules

Import the necessary modules CData, database connections, and natural language querying.

import os import logging import sys # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # Import required modules for CData and LlamaIndex import cdata.adobeanalytics as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI

Set Your OpenAI API Key

To use OpenAI's language model, you need to set your API key as an environment variable. Make sure you have your OpenAI API key available in your system's environment variables.

# Retrieve the OpenAI API key from the environment variables OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''as an alternative, you can also add your API key directly within your code (though this method is not recommended for production environments due to security risks):'' # Directly set the API key (not recommended for production use) OPENAI_API_KEY = "your-api-key-here"

Create a Database Connection

Next, establish a connection to Adobe Analytics using the CData connector using a connection string with the required connection properties.

Adobe Analytics uses the OAuth authentication standard. To authenticate using OAuth, you will need to create an app to obtain the OAuthClientId, OAuthClientSecret, and CallbackURL connection properties. See the "Getting Started" section of the help documentation for a guide.

Retrieving GlobalCompanyId

GlobalCompanyId is a required connection property. If you do not know your Global Company ID, you can find it in the request URL for the users/me endpoint on the Swagger UI. After logging into the Swagger UI Url, expand the users endpoint and then click the GET users/me button. Click the Try it out and Execute buttons. Note your Global Company ID shown in the Request URL immediately preceding the users/me endpoint.

Retrieving Report Suite Id

Report Suite ID (RSID) is also a required connection property. In the Adobe Analytics UI, navigate to Admin -> Report Suites and you will get a list of your report suites along with their identifiers next to the name.

After setting the GlobalCompanyId, RSID and OAuth connection properties, you are ready to connect to Adobe Analytics.

Connecting to Adobe Analytics

# Create a database engine using the CData Python Connector for Adobe Analytics engine = create_engine("cdata_adobeanalytics_2:///?User=GlobalCompanyId=myGlobalCompanyId; RSID=myRSID; OAuthClientId=myOauthClientId; OauthClientSecret=myOAuthClientSecret; CallbackURL=myCallbackURL;")

Initialize the OpenAI Instance

Create an instance of the OpenAI language model. Here, you can specify parameters like temperature and the model version.

# Initialize the OpenAI language model instance llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

Set Up the Database and Query Engine

Now, set up the SQL database and the query engine. The NLSQLTableQueryEngine allows you to perform natural language queries against your SQL database.

# Create a SQL database instance sql_db = SQLDatabase(engine) # This includes all tables # Initialize the query engine for natural language SQL queries query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

Execute a Query

Now, you can execute a natural language query against your live data source. In this example, we will query for the top two earning employees.

# Define your query string query_str = "Who are the top earning employees?" # Get the response from the query engine response = query_engine.query(query_str) # Print the response print(response)

Download a free, 30-day trial of the CData Python Connector for Adobe Analytics and start querying your live data seamlessly. Experience the power of natural language processing and unlock valuable insights from your data today.

Ready to get started?

Download a free trial of the Adobe Analytics Connector to get started:

 Download Now

Learn more:

Adobe Analytics Icon Adobe Analytics Python Connector

Python Connector Libraries for Adobe Analytics Data Connectivity. Integrate Adobe Analytics with popular Python tools like Pandas, SQLAlchemy, Dash & petl.