製品をチェック

API Driver のダウンロード

30日間無償トライアルへ

プロファイルのダウンロード

Senses プロファイル

Python のDash ライブラリを使って、Senses データ に連携するウェブアプリケーションを開発する方法

CData Python Connector を使って、Senses にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
senses ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for API を使うことで、pandas モジュールとDash フレームワークでSenses にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、Senses に連携して、Senses データ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Senses をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Dash をはじめとする多様なデータ分析・BI ツールにSenses データを連携
  3. ノーコードでの手軽な接続設定

必要なモジュールのインストール

まずは、pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でSenses データを可視化

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.api as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData Senses Connector からSenses データ との接続を確立します。

cnxn = mod.connect("Profile=C:\profiles\senses.apip;ProfileSettings='APIKey=my_api_key;'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")

Senses に接続するためには、Senses API キーが必要です。API キーは、Senses ユーザー設定ページで生成することができます。その後、ProfileSettings の接続プロパティに設定してください。Senses の開発者サイトにアクセスする場合は、接続文字列に「Subdomain=my_senses_subdomain;」を追加する必要があります。

次に、プロファイルをダウンロードしてドライバーがアクセス可能な場所に配置します。こちらからプロファイルをダウンロードして、「C:/profiles/」 などに設置してください。

Senses にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT Name, Amount FROM Deals WHERE Id = '1'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-apiedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、Senses データ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.Name, y=df.Amount, name='Name')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='Senses Deals Data', barmode='stack')
		})
], className="container")

アプリをセットアップして実行

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。

if __name__ == '__main__':
    app.run_server(debug=True)

最後に、Python でウェブアプリを起動してブラウザでSenses データ を見てみましょう。

python api-dash.py
Dash のウェブアプリでSenses データ を表示

ちゃんとデータが表示できてますね!

おわりに

Senses Python Connector の30日の無償トライアル をぜひダウンロードして、Senses データ への接続をPython アプリやスクリプトから簡単に作成してみてください。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.api as mod
import plotly.graph_objs as go

cnxn = mod.connect("Profile=C:\profiles\senses.apip;ProfileSettings='APIKey=my_api_key;'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

df = pd.read_sql("SELECT Name, Amount FROM Deals WHERE Id = '1'", cnxn)
app_name = 'dash-apidataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Name, y=df.Amount, name='Name')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='Senses Deals Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。