各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for NetSuite は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで NetSuite にデータ連携するPython アプリケーションを構築し、NetSuite データを可視化できます。 本記事では、SQLAlchemy でNetSuite に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors は、以下のような特徴を持った製品です。
CData Python Connectors では、1.データソースとしてNetSuite の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、NetSuite データに連携するEngne を作成します。
engine = create_engine("netsuite///?Account Id=XABC123456&Password=password&User=user&Role Id=3&Version=2013_1")
Authentication セクションで、User、Password プロパティを設定します。AccountId に企業アカウントのID を入力します。 オプションでRoleId を指定してログインユーザーの権限を制限することができます。
詳細はヘルプドキュメントの「はじめに」を参照してください。
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、SalesOrder テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class SalesOrder(base): __tablename__ = "SalesOrder" CustomerName = Column(String,primary_key=True) SalesOrderTotal = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("netsuite///?Account Id=XABC123456&Password=password&User=user&Role Id=3&Version=2013_1") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(SalesOrder).filter_by(Class_Name="Furniture : Office"): print("CustomerName: ", instance.CustomerName) print("SalesOrderTotal: ", instance.SalesOrderTotal) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
SalesOrder_table = SalesOrder.metadata.tables["SalesOrder"] for instance in session.execute(SalesOrder_table.select().where(SalesOrder_table.c.Class_Name == "Furniture : Office")): print("CustomerName: ", instance.CustomerName) print("SalesOrderTotal: ", instance.SalesOrderTotal) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
NetSuite データへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、NetSuite にすべての追加インスタンスを送ります。
new_rec = SalesOrder(CustomerName="placeholder", Class_Name="Furniture : Office") session.add(new_rec) session.commit()
NetSuite データの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、NetSuite にレコードを追加します。
updated_rec = session.query(SalesOrder).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.Class_Name = "Furniture : Office" session.commit()
NetSuite データの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(SalesOrder).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。