各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for AdobeAnalytics は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Adobe Analytics にデータ連携するPython アプリケーションを構築し、Adobe Analytics データを可視化できます。 本記事では、SQLAlchemy でAdobe Analytics に連携して、データを取得、 する方法を説明します。
CData Python Connectors は、以下のような特徴を持った製品です。
CData Python Connectors では、1.データソースとしてAdobe Analytics の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、Adobe Analytics データに連携するEngne を作成します。
engine = create_engine("adobeanalytics///?GlobalCompanyId=myGlobalCompanyId& RSID=myRSID& OAuthClientId=myOauthClientId& OauthClientSecret=myOAuthClientSecret& CallbackURL=myCallbackURL")
Adobe Analytics はOAuth 認証標準を利用しています。 OAuth 統合またはサービスアカウント統合で認証できます。OAuth を使って認証するには、アプリケーションを作成してOAuthClientId、OAuthClientSecret、およびCallbackURL 接続プロパティを取得しなければなりません。認証方法については、ヘルプドキュメントの「OAuth 認証の使用」を参照してください。
GlobalCompanyId は必須の接続プロパティです。Global Company ID がわからない場合は、Swagger UI のusers/me エンドポイントのリクエストURL で見つけることができます。Swagger UI にログインした後、ユーザーエンドポイントを展開し、「GET users/me」ボタンをクリックします。「Try it out」ボタンと「Execute」ボタンをクリックします。リクエストURL のusers/me エンドポイントの直前に表示されるGlobal Company ID をメモします。
Report Suite ID (RSID)は必須の接続プロパティです。Adobe Analytics UI で、「管理者」->「レポートスイート」に進むと、名前の横にある識別子とともにレポートスイートのリストが表示されます。
GlobalCompanyId、RSID、およびOAuth 接続プロパティを設定して、Adobe Analytics に接続してください。
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、AdsReport テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class AdsReport(base): __tablename__ = "AdsReport" Page = Column(String,primary_key=True) PageViews = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("adobeanalytics///?GlobalCompanyId=myGlobalCompanyId& RSID=myRSID& OAuthClientId=myOauthClientId& OauthClientSecret=myOAuthClientSecret& CallbackURL=myCallbackURL") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(AdsReport).filter_by(City="Chapel Hill"): print("Page: ", instance.Page) print("PageViews: ", instance.PageViews) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
AdsReport_table = AdsReport.metadata.tables["AdsReport"] for instance in session.execute(AdsReport_table.select().where(AdsReport_table.c.City == "Chapel Hill")): print("Page: ", instance.Page) print("PageViews: ", instance.PageViews) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。