How to Query Live MongoDB Data in Natural Language in Python using LlamaIndex



Use LlamaIndex to query live MongoDB data data in natural language using Python.

Start querying live data from MongoDB using the CData Python Connector for MongoDB. Leverage the power of AI with LlamaIndex and retrieve insights using simple English, eliminating the need for complex SQL queries. Benefit from real-time data access that enhances your decision-making process, while easily integrating with your existing Python applications.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live MongoDB data in Python. When you issue complex SQL queries from Python, the driver pushes supported SQL operations, like filters and aggregations, directly to MongoDB and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Whether you're analyzing trends, generating reports, or visualizing data, our Python connectors enable you to harness the full potential of your live data source with ease.

About MongoDB Data Integration

Accessing and integrating live data from MongoDB has never been easier with CData. Customers rely on CData connectivity to:

MongoDB's flexibility means that it can be used as a transactional, operational, or analytical database. That means CData customers use our solutions to integrate their business data with MongoDB or integrate their MongoDB data with their data warehouse (or both). Customers also leverage our live connectivity options to analyze and report on MongoDB directly from their preferred tools, like Power BI and Tableau.

For more details on MongoDB use case and how CData enhances your MongoDB experience, check out our blog post: The Top 10 Real-World MongoDB Use Cases You Should Know in 2024.


Getting Started


Overview

Here's how to query live data with CData's Python connector for MongoDB data using LlamaIndex:

  • Import required Python, CData, and LlamaIndex modules for logging, database connectivity, and NLP.
  • Retrieve your OpenAI API key for authenticating API requests from your application.
  • Connect to live MongoDB data using the CData Python Connector.
  • Initialize OpenAI and create instances of SQLDatabase and NLSQLTableQueryEngine for handling natural language queries.
  • Create the query engine and specific database instance.
  • Execute natural language queries (e.g., "Who are the top-earning employees?") to get structured responses from the database.
  • Analyze retrieved data to gain insights and inform data-driven decisions.

Import Required Modules

Import the necessary modules CData, database connections, and natural language querying.

import os import logging import sys # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # Import required modules for CData and LlamaIndex import cdata.mongodb as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI

Set Your OpenAI API Key

To use OpenAI's language model, you need to set your API key as an environment variable. Make sure you have your OpenAI API key available in your system's environment variables.

# Retrieve the OpenAI API key from the environment variables OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''as an alternative, you can also add your API key directly within your code (though this method is not recommended for production environments due to security risks):'' # Directly set the API key (not recommended for production use) OPENAI_API_KEY = "your-api-key-here"

Create a Database Connection

Next, establish a connection to MongoDB using the CData connector using a connection string with the required connection properties.

Set the Server, Database, User, and Password connection properties to connect to MongoDB. To access MongoDB collections as tables you can use automatic schema discovery or write your own schema definitions. Schemas are defined in .rsd files, which have a simple format. You can also execute free-form queries that are not tied to the schema.

Connecting to MongoDB

# Create a database engine using the CData Python Connector for MongoDB engine = create_engine("cdata_mongodb_2:///?User=Server=MyServer;Port=27017;Database=test;User=test;Password=Password;")

Initialize the OpenAI Instance

Create an instance of the OpenAI language model. Here, you can specify parameters like temperature and the model version.

# Initialize the OpenAI language model instance llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

Set Up the Database and Query Engine

Now, set up the SQL database and the query engine. The NLSQLTableQueryEngine allows you to perform natural language queries against your SQL database.

# Create a SQL database instance sql_db = SQLDatabase(engine) # This includes all tables # Initialize the query engine for natural language SQL queries query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

Execute a Query

Now, you can execute a natural language query against your live data source. In this example, we will query for the top two earning employees.

# Define your query string query_str = "Who are the top earning employees?" # Get the response from the query engine response = query_engine.query(query_str) # Print the response print(response)

Download a free, 30-day trial of the CData Python Connector for MongoDB and start querying your live data seamlessly. Experience the power of natural language processing and unlock valuable insights from your data today.

Ready to get started?

Download a free trial of the MongoDB Connector to get started:

 Download Now

Learn more:

MongoDB Icon MongoDB Python Connector

Python Connector Libraries for MongoDB Data Connectivity. Integrate MongoDB with popular Python tools like Pandas, SQLAlchemy, Dash & petl.