製品をチェック

SQL Server Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

Microsoft SQL Server アイコン SQL Server Driver 相談したい

Microsoft SQL Server へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにMicrosoft SQL Server をシームレスに統合。

SQLAlchemy ORM を使って、Python でSQL Server のデータに連携する方法

CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でSQL Server にOR マッピング可能に。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
sql ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SQL は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで SQL Server にデータ連携するPython アプリケーションを構築し、SQL Server のデータを可視化できます。 本記事では、SQLAlchemy でSQL Server に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. SQL Server をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Python をはじめとする多様なデータ分析・BI ツールにSQL Server のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてSQL Server の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

必要なモジュールのインストール

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でSQL Server のデータをモデル化

次は、接続文字列で接続を確立します。create_engine 関数を使って、SQL Server のデータに連携するEngne を作成します。

engine = create_engine("sql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=1433")

SQL Server 接続プロパティの取得・設定方法

Microsoft SQL Server への接続には以下を入力します。

  • Server: SQL Server が稼働するサーバー名。
  • User: SQL Server に接続するユーザー名。
  • Password: 接続するユーザーのパスワード。
  • Database: SQL Server データベース名。

Azure SQL Server およびAzure Data Warehouse への接続

Azure SQL Server およびAzure Data Warehouse には以下の接続プロパティを入力して接続します:

  • Server: Azure 上のサーバー。Azure ポータルの「SQL databases」(もしくは「SQL data warehouses」)-> データベースを選択 -> 「Overview」-> 「Server name」で確認が可能です。
  • User: Azure に認証するユーザー名。
  • Password: 認証するユーザーのパスワード。
  • Database: Azure ポータルでSQL databases (or SQL warehouses) ページに表示されるデータベース名。

SQL Server のデータのマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Orders(base):
	__tablename__ = "Orders"
	ShipName = Column(String,primary_key=True)
	Freight = Column(String)
	...

SQL Server のデータをクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("sql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=1433")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Orders).filter_by(ShipCountry="USA"):
	print("ShipName: ", instance.ShipName)
	print("Freight: ", instance.Freight)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Orders_table = Orders.metadata.tables["Orders"]
for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")):
	print("ShipName: ", instance.ShipName)
	print("Freight: ", instance.Freight)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

SQL Server のデータの挿入(INSERT)

SQL Server のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、SQL Server にすべての追加インスタンスを送ります。

new_rec = Orders(ShipName="placeholder", ShipCountry="USA")
session.add(new_rec)
session.commit()

SQL Server のデータを更新(UPDATE)

SQL Server のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、SQL Server にレコードを追加します。

updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.ShipCountry = "USA"
session.commit()

SQL Server のデータを削除(DELETE)

SQL Server のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

SQL Server からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。