こんにちは!プロダクトスペシャリストの宮本です。
Google Cloud Data Fusion は、ノーコードでデータ連携の設定が可能な言わば GCP の ETL ツール(サービス)です。たくさんのコネクタや変換・分析機能がデフォルトで用意されているため、さまざまなデータソースを色々な組み合わせで扱うことが可能なようです。
また JDBC を扱うこともできるため、この記事では、CData JDBC Driver for Spark のデータ を使って、Spark のデータ データをCloud Data Fusion でGoogle BigQuery にノーコードでパイプラインします。
Cloud Data Fusion の準備
まずはCloud Data Fusion のインスタンスを作成します。
- Data Fusion のトップ画面にある「CREATE INSTANCE」からインスタンスを作成します。
- 作成されたインスタンス名を先ほどの画面でクリックすると以下の画面に遷移しますので、画面下部にある Service Account をコピーします。
- 画面上部にある追加からメンバーを追加します。メンバー名は先ほどコピーした「Service Account」に合わせてください。
役割は BiqQuery へもアクセスしますので、「BigQuery 管理者」、「Cloud Data Fusion 管理者」、「Cloud Data Fusion API サービス エージェント」を付与します。
CData JDBC Driver for SparkSQL のアップロード
ここからは実際に、Data Fusion の設定をしていきます。
まずは JDBC Driver をアップロードを行います。
- 「View Instance」をクリックして、Data Fusion の Control Center を開きます。
- Control Center が表示されたら、「+」ボタンをクリックして JDBC Driver をアップロードしていきます。
- Name:アップロードしたドライバーに設定する名前
- Class name:cdata.jdbc.sparksql.SparkSQLDriver
- アップロードする際の注意点として、Driver のファイル名を name-version の形式に変更してアップロードする必要があります。
なお、jarファイルをダブルクリックした際に表示されているバージョンをもとに「sparksql-connector-java-19.0.7115.0.jar」に変更しました。
- アップロードが成功するとこのような画面が表示されるので、「Create a Pipeline」をクリックします。
Spark からGoogle BigQuery へのパイプラインの作成
Data Fusion のパイプライン作成
インプット元はサイドメニューの「Source」から選択します。今回は先ほどアップロードした Spark のデータ の JDBC Driver を使用するため、「DataBase」を選択します。
アウトプット先は同じくサイドメニューより「Sink」→「BigQuery」を選択します。
「DataBase」の設定
「DataBase」のアイコンにカーソルを持ってくるとプロパティというボタンが表示されるのでクリックし、下記内容を設定します。
- Label:SparkSQL
- Reference Name:SparkSQL
- Plugin Name:SparkSQL Driver(Driver をアップロードした際の名前)
- Plugin Type:jdbc
- Connection String:SparkSQL へ接続する際の JDBC URL
- Import Query:インプットしたいデータを抽出するクエリ
SparkSQL への接続
SparkSQL への接続を確立するには以下を指定します。
- Server:SparkSQL をホストするサーバーのホスト名またはIP アドレスに設定。
- Port:SparkSQL インスタンスへの接続用のポートに設定。
- TransportMode:SparkSQL サーバーとの通信に使用するトランスポートモード。有効な入力値は、BINARY およびHTTP です。デフォルトではBINARY が選択されます。
- AuthScheme:使用される認証スキーム。有効な入力値はPLAIN、LDAP、NOSASL、およびKERBEROS です。デフォルトではPLAIN が選択されます。
Databricks への接続
Databricks クラスターに接続するには、以下の説明に従ってプロパティを設定します。Note:必要な値は、「クラスター」に移動して目的のクラスターを選択し、
「Advanced Options」の下にある「JDBC/ODBC」タブを選択することで、Databricks インスタンスで見つけることができます。
- Server:Databricks クラスターのサーバーのホスト名に設定。
- Port:443
- TransportMode:HTTP
- HTTPPath:Databricks クラスターのHTTP パスに設定。
- UseSSL:True
- AuthScheme:PLAIN
- User:'token' に設定。
- Password:パーソナルアクセストークンに設定(値は、Databricks インスタンスの「ユーザー設定」ページに移動して「アクセストークン」タブを選択することで取得できます)。
Connection String は以下の形式です。
jdbc:sparksql:Server=127.0.0.1;
上のキャプチャの赤枠は、Salesforce から BigQuery へアウトプットするデータの定義となります。
こちらは「Import Query」のすぐ右上にある「Get Schema」をクリックすると下の画面が表示されますので、「Import Query」で入力したクエリを実行し、カラムを定義します。
「BigQuery」の設定
こちらも同様に BigQuery のプロパティから下記内容を設定します。
- Label:BigQuery
- Reference Name:BigQuery
- Project ID:使用するProject ID
- DataSet:使用するDataSet
- Table:使用するテーブル名、例:Account_DataFusion
作成したSpark のデータ からBigQuery のパイプラインの実行
まずは作成したパイプラインをデプロイします。赤枠の「Deploy」ボタンをクリックしてデプロイを行います。
デプロイ完了後、Runボタンが表示されますので、クリックします。
このようにCData JDBC ドライバをアップロードすることで、簡単にGoogle Cloud Data Fusion でSpark のデータ データをノーコードで連携し、BigQuery などへのパイプラインを作成することができます。
是非、CData JDBC Driver for SparkSQL 30日の無償評価版 をダウンロードして、お試しください。