各製品の資料を入手。
詳細はこちら →CData
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for Sage300 と組み合わせることで、Airflow からリアルタイムSage 300 のデータに連携できます。 この記事では、Apache Airflow インスタンスからSage 300 のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムSage 300 のデータを扱う上で高いパフォーマンスを提供します。 Sage 300 にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのSage 300 側でサポートしているSQL 操作をSage 300 に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってSage 300 のデータを操作および分析できます。
JDBC URL の作成の補助として、Sage 300 JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.sage300.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Sage 300 には、Sage 300 Web API で通信するための初期設定が必要となるます。
Basic 認証を使用してSage 300 へ認証します。
Sage 300 に認証するには、次のプロパティを入力してください。プロバイダーは、クッキーを使用してSage 300 が開いたセッションを再利用することに注意してください。 そのため、資格情報はセッションを開く最初のリクエストでのみ使用されます。その後は、Sage 300 が返すクッキーを認証に使用します。
クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:sage300:RTK=5246...;User=SAMPLE;Password=password;URL=http://127.0.0.1/Sage300WebApi/v1/-/;Company=SAMINC;
|
Database Driver Class Name | cdata.jdbc.sage300.Sage300Driver |
jdbc:sage300:RTK=5246...;User=SAMPLE;Password=password;URL=http://127.0.0.1/Sage300WebApi/v1/-/;Company=SAMINC;
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにSage 300 のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="sage 300_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()