各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for API は、pandas、Matplotlib、SQLAlchemy から使用することで 楽楽明細 にデータ連携するPython アプリケーションを構築したり、楽楽明細 のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能で楽楽明細 にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。
CData Python Connectors は、以下のような特徴を持った製品です。
CData Python Connectors では、1.データソースとして楽楽明細 の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由で楽楽明細 にアクセスします。
pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
次にライブラリをインポートします。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
次は接続文字列を作成して楽楽明細 に接続します。create_engine 関数を使って、楽楽明細 に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。
engine = create_engine("api:///?Profile=C:\profiles\RakurakuMeisai.apip&ProfileSettings='APIKey=my_api_key&Account=my_account_name&Domain=my_domain_name&'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
「楽楽明細API キー」、「ドメイン」、「アカウント」を入力することで、楽楽明細に接続できます。API キーは、楽楽明細のユーザー設定ページで生成できます。ドメインとアカウントは、ご利用の環境のURL から見つけることができます。これらのプロパティを取得したら、ProfileSettings 接続プロパティに設定してください。
次に、プロファイルをダウンロードしてドライバーがアクセス可能な場所に配置します。こちらからプロファイルをダウンロードして、「C:/profiles/」 などに設置してください。
pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。
df = pandas.read_sql("""SELECT CustomerName, EmailAddress FROM Customers WHERE CustomerCode = '1'""", engine)
DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、楽楽明細 のデータをグラフ化してみます。
df.plot(kind="bar", x="CustomerName", y="EmailAddress") plt.show()
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("api:///?Profile=C:\profiles\RakurakuMeisai.apip&ProfileSettings='APIKey=my_api_key&Account=my_account_name&Domain=my_domain_name&'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") df = pandas.read_sql("""SELECT CustomerName, EmailAddress FROM Customers WHERE CustomerCode = '1'""", engine) df.plot(kind="bar", x="CustomerName", y="EmailAddress") plt.show()