各製品の資料を入手。
詳細はこちら →CData
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for API と組み合わせることで、Airflow からリアルタイム楽楽明細 のデータに連携できます。 この記事では、Apache Airflow インスタンスから楽楽明細 のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイム楽楽明細 のデータを扱う上で高いパフォーマンスを提供します。 楽楽明細 にSQL クエリを発行すると、CData ドライバーはフィルタや集計などの楽楽明細 側でサポートしているSQL 操作を楽楽明細 に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使って楽楽明細 のデータを操作および分析できます。
JDBC URL の作成の補助として、楽楽明細 JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.api.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
「楽楽明細API キー」、「ドメイン」、「アカウント」を入力することで、楽楽明細に接続できます。API キーは、楽楽明細のユーザー設定ページで生成できます。ドメインとアカウントは、ご利用の環境のURL から見つけることができます。これらのプロパティを取得したら、ProfileSettings 接続プロパティに設定してください。
次に、プロファイルをダウンロードしてドライバーがアクセス可能な場所に配置します。こちらからプロファイルをダウンロードして、「C:/profiles/」 などに設置してください。
クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:api:RTK=5246...;Profile=C:\profiles\RakurakuMeisai.apip;ProfileSettings='APIKey=my_api_key;Account=my_account_name;Domain=my_domain_name;'InitiateOAuth=GETANDREFRESH
|
Database Driver Class Name | cdata.jdbc.api.APIDriver |
jdbc:api:RTK=5246...;Profile=C:\profiles\RakurakuMeisai.apip;ProfileSettings='APIKey=my_api_key;Account=my_account_name;Domain=my_domain_name;'InitiateOAuth=GETANDREFRESH
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルに楽楽明細 のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="楽楽明細_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()