各製品の資料を入手。
詳細はこちら →CData
こんにちは!リードエンジニアの杉本です。
Apache Spark は大規模データ処理のための高速エンジンです。CData JDBC Driver for CSV と組み合わせると、Spark はリアルタイムでCSV のデータに連携して処理ができます。本記事では、Spark シェルに接続してCSV をクエリする方法について解説します。
CData JDBC Driver は、最適化されたデータ処理がドライバーに組み込まれているため、リアルタイムCSV と対話するための高いパフォーマンスを提供します。CSV に複雑なSQL クエリを発行すると、ドライバーはフィルタや集計など、サポートされているSQL操作を直接CSV にプッシュし、組込みSQL エンジンを使用してサポートされていない操作(SQL 関数やJOIN 操作)をクライアント側で処理します。組み込みの動的メタデータクエリを使用すると、ネイティブデータ型を使用してCSV を操作して分析できます。
まずは、本記事右側のサイドバーからCSV JDBC Driver の無償トライアルをダウンロード・インストールしてください。30日間無償で、製品版の全機能が使用できます。
$ spark-shell --jars /CData/CData JDBC Driver for CSV/lib/cdata.jdbc.csv.jar
DataSource プロパティにローカルフォルダ名を設定します。
.csv、.tab、.txt ではない拡張子のファイルを扱う場合には、IncludeFiles 使用する拡張子をカンマ区切りで設定します。Microsoft Jet OLE DB 4.0 driver 準拠の場合にはExtended Properties を設定することができます。別の方法として、Schema.ini ファイルにファイル形式を記述することも可能です。
CSV ファイルの削除や更新を行う場合には、UseRowNumbers をTRUE に設定します。RowNumber はテーブルKey として扱われます。
URI をバケットおよびフォルダに設定します。さらに、次のプロパティを設定して認証します。
URI をCSV ファイルを含むフォルダへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。
URI をCSV ファイルを含むフォルダへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。
URI をCSV ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。
URI をCSV ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。
URI をルートフォルダとして使用されるフォルダへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。
デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。
JDBC 接続文字列URL の作成には、CSV JDBC Driver にビルトインされたデザイナを使用できます。JAR ファイルをダブルクリックするか、コマンドラインでJAR ファイルを実行するとデザイナが開きます。
java -jar cdata.jdbc.csv.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
scala> val csv_df = spark.sqlContext.read.format("jdbc").option("url", "jdbc:csv:DataSource=MyCSVFilesFolder;").option("dbtable","Customer").option("driver","cdata.jdbc.csv.CSVDriver").load()
CSV をテンポラリーテーブルとして登録します:
scala> csv_df.registerTable("customer")
データに対して、次のようなカスタムSQL クエリを実行します。
scala> csv_df.sqlContext.sql("SELECT City, TotalDue FROM Customer WHERE FirstName = Bob").collect.foreach(println)
コンソールで、次のようなCSV のデータを取得できました!これでCSV との連携は完了です。
CData JDBC Driver for CSV をApache Spark で使って、CSV に対して、複雑かつハイパフォーマンスなクエリを実行できます。30日の無償評価版 をダウンロードしてぜひお試しください。