各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for BigCommerce を使うことで、pandas モジュールとDash フレームワークでBigCommerce にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、BigCommerce に連携して、BigCommerce のデータ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。
CData Python Connectors は、以下のような特徴を持った製品です。
まずは、pip で必要なモジュールおよびフレームワークをインストールします:
pip install pandas pip install dash pip install dash-daq
必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。
まず、CData Connector を含むモジュールをインポートします:
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.bigcommerce as mod import plotly.graph_objs as go
接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData BigCommerce Connector からBigCommerce のデータ との接続を確立します。
cnxn = mod.connect("OAuthClientId=YourClientId; OAuthClientSecret=YourClientSecret; StoreId='YourStoreID'; CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")
BigCommerce 認証は標準のOAuth フローに基づいています。
BigCommerce Store に接続するには、StoreId が必要です。Store Id を確認するには、以下の手順に従ってください。
加えて、自分のデータをテストおよびアクセスするには、個人用トークンを取得する必要があります。個人用トークンを取得する方法は次のとおりです。
read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。
df = pd.read_sql("""SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'""", cnxn)
DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。
app_name = 'dash-bigcommerceedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash'
次に、BigCommerce のデータ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。
trace = go.Bar(x=df.FirstName, y=df.LastName, name='FirstName') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='BigCommerce Customers Data', barmode='stack') }) ], className="container")
接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。
if __name__ == '__main__': app.run_server(debug=True)
最後に、Python でウェブアプリを起動してブラウザでBigCommerce のデータ を見てみましょう。
python bigcommerce-dash.py
ちゃんとデータが表示できてますね!
BigCommerce Python Connector の30日の無償トライアル をぜひダウンロードして、BigCommerce のデータ への接続をPython アプリやスクリプトから簡単に作成してみてください。
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.bigcommerce as mod import plotly.graph_objs as go cnxn = mod.connect("OAuthClientId=YourClientId; OAuthClientSecret=YourClientSecret; StoreId='YourStoreID'; CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") df = pd.read_sql("SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'", cnxn) app_name = 'dash-bigcommercedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash' trace = go.Bar(x=df.FirstName, y=df.LastName, name='FirstName') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='BigCommerce Customers Data', barmode='stack') }) ], className="container") if __name__ == '__main__': app.run_server(debug=True)