製品をチェック

SQL Analysis Services Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

SQL Server Analysis Services アイコン SQL Analysis Services Python Connector 相談したい

SQL Server Analysis Services へのデータ連携用のPython Connector ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにSQL Server Analysis Services をシームレスに統合。

Python pandas を使ってSQL Analysis Services データを可視化・分析する方法

CData Python Connector を使えば、Python でSQL Analysis Services をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
ssas ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for SSAS は、pandas、Matplotlib、SQLAlchemy から使用することで SQL Analysis Services にデータ連携するPython アプリケーションを構築したり、SQL Analysis Services データの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でSQL Analysis Services にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. SQL Analysis Services をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにSQL Analysis Services データを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてSQL Analysis Services の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でSQL Analysis Services にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でSQL Analysis Services データを可視化

次は接続文字列を作成してSQL Analysis Services に接続します。create_engine 関数を使って、SQL Analysis Services に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("ssas:///?User=myuseraccount&Password=mypassword&URL=http://localhost/OLAP/msmdpump.dll")

接続するには、Url プロパティを有効なSQL Server Analysis Services エンドポイントに設定して認証を提供します。XMLA アクセスを使用して、HTTP 経由でホストされているSQL Server Analysis Services インスタンスに接続できます。 Microsoft ドキュメント configure HTTP access を参照してSQL Server Analysis Services に接続してください。

SQL をSQL Server Analysis Services に実行するには、ヘルプドキュメントの「Analysis Services データの取得」を参照してください。接続ごとにメタデータを取得する代わりに、CacheLocation を設定できます。

  • HTTP 認証

    AuthScheme を"Basic" または"Digest" に設定してUser とPassword を設定します。CustomHeaders に他の認証値を指定します。

  • Windows (NTLM)

    Windows のUser とPassword を設定して、AuthScheme をNTLM に設定します。

  • Kerberos およびKerberos Delegation

    Kerberos を認証するには、AuthScheme をNEGOTIATE に設定します。Kerberos 委任を使うには、AuthScheme をKERBEROSDELEGATION に設定します。必要があれば、User、Password およびKerberosSPN を設定します。デフォルトでは、CData 製品は指定されたUrl でSPN と通信しようと試みます。

  • SSL/TLS:

    デフォルトでは、CData 製品はサーバーの証明書をシステムの信頼できる証明書ストアと照合してSSL/TLS のネゴシエーションを試みます。別の証明書を指定するには、利用可能なフォーマットについてヘルプドキュメントの「SSLServerCert」プロパティを参照してください。

接続を設定したら、その後はあらゆるキューブを二次元テーブルとして扱うことができます。データに接続する際にCData 製品がSSAS のメタデータを取得して、動的にテーブルスキーマを更新します。 「CacheLocation」プロパティを設定すれば自動でファイルにキャッシュを作成するので、接続時に毎回メタデータを取得する必要もなくなります。

詳細は、ヘルプドキュメントの「Retrieving Analysis Services Data」を参照してください。

SQL Analysis Services にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Fiscal_Year, Sales_Amount FROM Adventure_Works WHERE Fiscal_Year = 'FY 2008'""", engine)

SQL Analysis Services データを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、SQL Analysis Services データをグラフ化してみます。

df.plot(kind="bar", x="Fiscal_Year", y="Sales_Amount")
plt.show()
SQL Analysis Services データ in a Python plot (Salesforce is shown).

SQL Analysis Services からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("ssas:///?User=myuseraccount&Password=mypassword&URL=http://localhost/OLAP/msmdpump.dll")
df = pandas.read_sql("""SELECT Fiscal_Year, Sales_Amount FROM Adventure_Works WHERE Fiscal_Year = 'FY 2008'""", engine)

df.plot(kind="bar", x="Fiscal_Year", y="Sales_Amount")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。